Locally Minimax Optimal Predictive Modeling with Bayesian Networks
نویسندگان
چکیده
We propose an information-theoretic approach for predictive modeling with Bayesian networks. Our approach is based on the minimax optimal Normalized Maximum Likelihood (NML) distribution, motivated by the MDL principle. In particular, we present a parameter learning method which, together with a previously introduced NML-based model selection criterion, provides a way to construct highly predictive Bayesian network models from data. The method is parameterfree and robust, unlike the currently popular Bayesian marginal likelihood approach which has been shown to be sensitive to the choice of prior hyperparameters. Empirical tests show that the proposed method compares favorably with the Bayesian approach in predictive tasks.
منابع مشابه
Learning locally minimax optimal Bayesian networks
We consider the problem of learning Bayesian network models in a non-informative setting, where the only available information is a set of observational data, and no background knowledge is available. The problem can be divided into two different subtasks: learning the structure of the network (a set of independence relations), and learning the parameters of the model (that fix the probability ...
متن کاملGyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods
In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...
متن کاملOptimal designs for regression models with a constant coefficient of variation
In this paper we consider the problem of constructing optimal designs for models with a constant coefficient of variation. We explore the special structure of the information matrix in these models and derive a characterization of optimal designs in the sense of Kiefer and Wolfowitz (1960). Besides locally optimal designs, Bayesian and standardized minimax optimal designs are also considered. P...
متن کاملAdaptive Bayesian Density Estimation with Location-Scale Mixtures
Abstract: We study convergence rates of Bayesian density estimators based on finite location-scale mixtures of a kernel proportional to exp{−|x|p}. We construct a finite mixture approximation of densities whose logarithm is locally β-Hölder, with squared integrable Hölder constant. Under additional tail and moment conditions, the approximation is minimax for both the Kullback-Leibler divergence...
متن کاملConvergence rate of Bayesian tensor estimator and its minimax optimality
We investigate the statistical convergence rate of a Bayesian low-rank tensor estimator, and derive the minimax optimal rate for learning a lowrank tensor. Our problem setting is the regression problem where the regression coefficient forms a tensor structure. This problem setting occurs in many practical applications, such as collaborative filtering, multi-task learning, and spatiotemporal dat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009